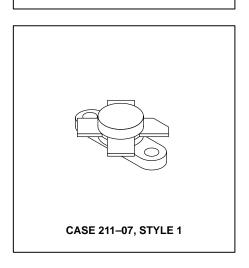
The RF Line NPN Silicon RF Power Transistors

 \dots designed primarily for wideband large-signal driver and output amplifier stages in the 30–200 MHz frequency range.


- Guaranteed Performance at 150 MHz, 28 Vdc Output Power = 30 Watts Minimum Gain = 10 dB
- 100% Tested for Load Mismatch at All Phase Angles with 30:1 VSWR
- · Gold Metallization System for High Reliability Applications

MRF314

30 W, 30-200 MHz RF POWER TRANSISTORS NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	35	Vdc
Collector-Base Voltage	VCBO	65	Vdc
Emitter-Base Voltage	V _{EBO} 4.0		Vdc
Collector Current — Continuous	IC	3.4	Adc
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	PD	82 0.47	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	2.13	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

,					
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	•	•
Collector–Emitter Breakdown Voltage (I _C = 30 mAdc, I _B = 0)	V(BR)CEO	35	_	_	Vdc
Collector–Emitter Breakdown Voltage (I _C = 30 mAdc, V _{BE} = 0)	V(BR)CES	65	_	_	Vdc
Collector–Base Breakdown Voltage (I _C = 30 mAdc, I _E = 0)	V(BR)CBO	65	_	_	Vdc
Emitter–Base Breakdown Voltage ($I_{\text{E}} = 3.0 \text{ mAdc}, I_{\text{C}} = 0$)	V(BR)EBO	4.0	_	_	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	ICBO	_	_	3.0	mAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 1.5 Adc, V _{CE} = 5.0 Vdc)	hFE	20	_	80	_

NOTE: (continued)

^{1.} These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as RF amplifiers.

ELECTRICAL CHARACTERISTICS — **continued** ($T_C = 25$ °C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 30 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	30	40	pF
FUNCTIONAL TESTS (Figure 1)	•				
Common–Emitter Amplifier Power Gain (V _{CC} = 28 Vdc, P _{Out} = 30 W, f = 150 MHz)	GPE	10	13.5	_	dB
Collector Efficiency (V _{CC} = 28 Vdc, P _{out} = 30 W, f = 150 MHz)	η	50	_	_	%
Load Mismatch (V _{CC} = 28 Vdc, P _{Out} = 30 W, f = 150 MHz, VSWR = 30:1 all phase angles)	Ψ	No Degradation in Power Output			

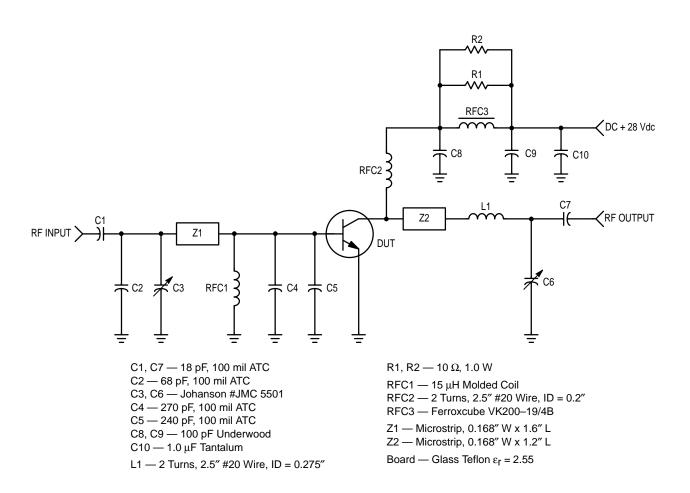


Figure 1. 150 MHz Test Circuit

TYPICAL PERFORMANCE CURVES

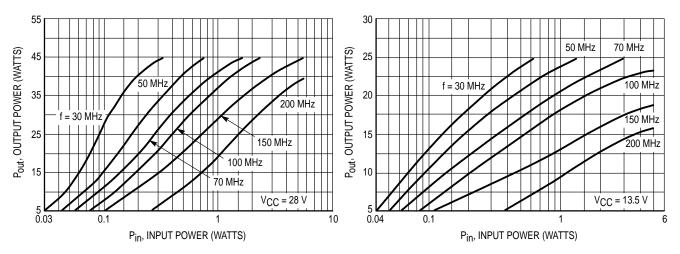


Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Input Power

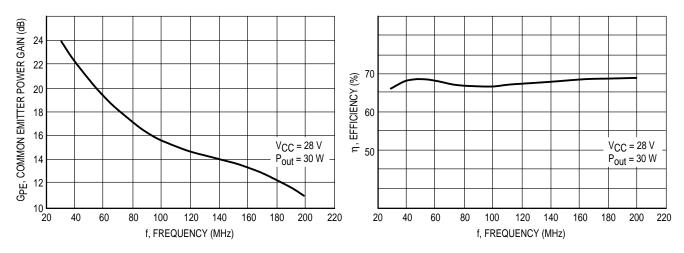
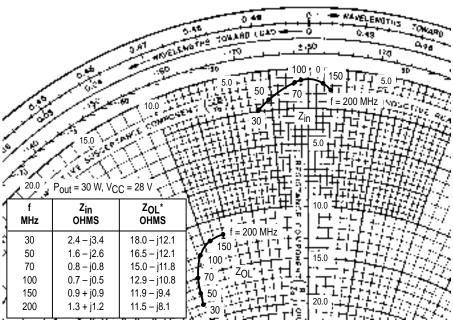
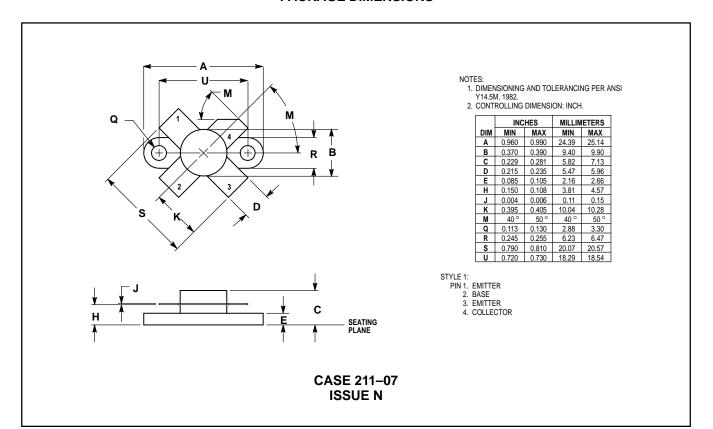



Figure 4. Power Gain versus Frequency


Figure 5. Efficiency versus Frequency

 Z_{OL}^* = Conjugate of the optimum load impedance into which the device output operates at a given output power voltage and frequency.

Figure 6. Series Equivalent Input/Output Impedance

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "a are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

